Adaptive Dynamic Programming Applied to a 6 DoF Quadrotor
نویسنده
چکیده
This chapter discusses how the principles of Adaptive Dynamic Programming (ADP) can be applied to the control of a quadrotor helicopter platform flying in an uncontrolled environment and subjected to various disturbances and model uncertainties. ADP is based on reinforcement learning. The controller (actor) changes its control policy (action) based on stimuli received in response to its actions by the critic (cost function, reward). There is a cause and effect relationship between action and reward. Reward acts as a reinforcement signal that leads to learning of what actions are likely to generate it. After a number of iterations, the overall actor-critic structure stores information (knowledge) about the system dynamics and the optimal controller that can accomplish the explicit or implicit goal specified in the cost function. DOI: 10.4018/978-1-60960-551-3.ch005
منابع مشابه
Dynamic modeling and control of a 4 DOF robotic finger using adaptive-robust and adaptive-neural controllers
In this research, first, kinematic and dynamic equations of a 4-DOF 3-link robotic finger are derived using Denavit-Hartenberg convention and Lagrange’s formulation. To model the muscles, several springs and dampers are placed between the finger links. Then, two advanced controllers, namely adaptive-robust and adaptive-neural, which can control the robotic finger in presence of parametric uncer...
متن کاملDistributed Fuzzy Adaptive Sliding Mode Formation for Nonlinear Multi-quadrotor Systems
This paper suggests a decentralized adaptive sliding mode formation procedure for affine nonlinear multi-quadrotor under a fixed directed topology wherever the followers are conquered by dynamical uncertainties. Compared with the previous studies which primarily concentrated on linear single-input single-output (SISO) agents or nonlinear agents with constant control gain, the proposed method is...
متن کاملRobust Nonlinear Composite Adaptive Control of Quadrotor
A robust nonlinear composite adaptive control algorithm is done for a 6-DOF quadrotor system. The system is considered to suffer from the presence of parametric uncertainty and noise signal. The under-actuated system is split to two subsystems using dynamic inversion. A sliding mode control is controlling the internal dynamics while the adaptive control is controlling the fully actuated subsyst...
متن کاملControl of Quadrotor Using Sliding Mode Disturbance Observer and Nonlinear Hâ
In this paper, a nonlinear model of the underactuated six degrees of freedom (6 DOF) quadrotor helicopter was derived based on the Newton-Euler formalism. A new nonlinear robust control strategy was proposed to solve the stabilizing and path following problems in presence of external disturbances and parametric uncertainties. The proposed control structure consist of a sliding mode control base...
متن کاملTuning of PID Controllers for Quadcopter System using Hybrid Memory based Gravitational Search Algorithm – Particle Swarm Optimization
Quadrotors are coming up as an attractive platform for unmanned aerial vehicle (UAV) research, due to the simplicity of their structure and maintenance, their ability to hover, and their vertical take-off and landing (VTOL) capability. With the vast advancements in small-size sensors, actuators and processors, researches are now focusing on developing mini UAV’s to be used in both research and ...
متن کامل